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1. Introduction

Many years ago, Kugo and Townsend [1] pointed out a relationship between supersymmetric

field theories with N = 2, 4, 8 and 16 supercharges and the four normed division algebras

K ∼= R, C, H and O. The key observation is algebraic. Theories with N = 2, 4, 8 and 16

supercharges naturally live in d = 3, 4, 6 and 10 spacetime dimensions respectively. The

Lorentz Lie algebra in these dimensions is isomorphic to the algebra of 2 × 2 Hermitian

matrices with vanishing trace and elements in K,

sl(2; K) ∼= so(d− 1, 1) (1.1)

This allows us to express a spinor in d dimensions as a 2-component K-vector, generalizing

the well-known result for d = 4. This construction was elaborated upon in [2].

For theories with N = 2, 4 and 8 supercharges, the relationship to the division algebra

K also manifests itself in more physical and dynamical matters. This includes familiar

features of supersymmetric theories, such as the holomorphy of the superpotential and

the hyperKähler/quaternionic structure of Calabi-Yau moduli spaces. However, so far the

tantalizing idea that an octonionic structure underlies theories with 16 supercharges has

not led to major insight about quantum dynamics.

The purpose of this short note is to point out that the isomorphism (1.1) has a simple,

physical consequence in the framework of supersymmetric quantum mechanics. We focus

on SU(2) gauged quantum mechanics. The theory with N supercharges can be thought

of as the dimensional reduction of the minimal super Yang-Mills theory in d = 3, 4, 6 and

10 dimensions, and describes the non-relativistic dynamics of two D0-branes moving in
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d − 1 = N/2 + 1 spatial dimensions. We show that the states of a pair of orbiting D0-

branes undergo a holonomy described by the Hopf map associated to the division algebra

R, C, H and O.

The four Hopf maps take SN−1 → SN/2:

S1
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The case of N = 2 supercharges is special. The map Z2 →֒ S1 → S1, sometimes known

as the zeroth Hopf map, describes the Möbius bundle. We will show in section 3.1 that

the ground state of the associated quantum mechanics undergoes a discrete Z2 holonomy,

changing by a sign as D0-branes orbit. Since a single orbit is equivalent to two exchanges,

this implies that the D0-branes in N = 2 Yang-Mills quantum mechanics are anyons: they

obey exchange statistics e±iπ/2 = ±i. As we review in section 3, the remaining three

Hopf maps induce connections over the base space Sd−2 which subsequently arise as Berry

connections in the quantum mechanics. Each is familiar to physicists: they are the U(1)

Dirac monopole, the SU(2) Yang monopole [3], and the SO(8) octonionic monopole [4, 5].

This quartet of Hopf bundles are the fab four of geometrical phases. The discrete

Z2 holonomy was one of the earliest known Berry phases [6], while the Dirac monopole

appeared as an example in Berry’s original paper [7]. Both the Yang monopole and the

octonionic monopole have also arisen in various contexts. The former was first introduced

as a non-Abelian Berry phase in [8, 9], and has subsequently appeared in several condensed

matter systems [10 – 12], with various properties explored in [13]. The SO(8) octonionic

monopole appeared previously in association with the eight-dimensional quantum Hall

effect [14]. In this paper we will see how all these connections arise as (non-Abelian) Berry

phases in Yang-Mills quantum mechanics with N supercharges.

The present paper can be thought of as a follow-up to our recent work [15, 16] exploring

the Berry phase that emerges in various supersymmetric quantum mechanics. In [15], we

showed that certain N = 4 quantum systems naturally give rise to the Dirac monopole

and associated constructs such as the smooth ’t Hooft-Polyakov monopole. In [16], we

studied a quantum theory with N = 8 supercharges and showed that a deformation of the

Yang-monopole arises as the spin connection of a dual gravitational background. The Yang

monopole and octonionic monopole also appeared in a related context in [17].

2. D0-brane dynamics

In this paper we study the SU(2) super-Yang-Mills quantum mechanics with N = 2, 4, 8

and 16 supercharges. The Lagrangians are the dimensional reduction of minimal super

Yang-Mills in d = 3, 4, 8 and 10 dimensions respectively, and each takes the form

L =
1

2g2
Tr



(D0Xi)
2 +

∑

i<j

[Xi,Xj ]
2 + iψ̄D0ψ + ψ̄Γi [Xi, ψ]



 , (2.1)
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where Xi and ψα are both su(2) valued fields. The inverse coupling constant 1/g2 is the

mass of the D0-brane. Lagrangians with different amounts of supersymmetry are distin-

guished by the number of scalar fieldsXi, and the structure of the Grassmann parameters ψ.

The scalar index runs over i = 1, . . . , d−1 and the Lagrangian describes the non-relativistic

relative motion of a pair of D0-branes moving in d− 1 = 2, 3, 5 and 9 spatial dimensions.1

The matrices Γi satisfy the d − 1 dimensional Euclidean Clifford algebra: {Γi,Γj} = 2δij .

The spinors are real or complex, depending on the possible representations of the Clifford

algebra:

• N = 2: For d− 1 = 2, we may choose the real Pauli matrices Γ1 = σ1, Γ2 = σ3. The

spinor ψα, with α = 1, 2, is also real.

• N = 4: For d− 1 = 3, there are only complex representations of the Clifford algebra.

We take the Pauli matrices Γi = σi. The spinor ψα, with α = 1, 2, is complex.

• N = 8: The Clifford algebra in d− 1 = 5 dimensions is again complex. The complex

spinor ψα has α = 1, . . . , 4.

• N = 16: The d− 1 = 9 Clifford algebra admits a real representation. The real spinor

ψα has α = 1, . . . , 16.

2.1 The Born-Oppenheimer approximation

We work in the Born-Oppenheimer approximation, considering well-localized wavepackets

describing D0-branes with separation X̂i. To this end, we expand around the classical

background

〈Xi〉 =
1

2
X̂iσ3 (2.2)

and study the effects of high-frequency modes of open strings stretched between the D0-

branes. Our results are applicable in the weak coupling limit X̂3 ≫ g2. This typically

excludes the ground state of the full system, for which the wavefunction is localized close

to the origin X̂ ∼ g2/3.

The background (2.2) breaks the gauge symmetry to the Cartan subalgebra: SU(2) →
U(1). The remnant Z2 Weyl group acts as X̂i → −X̂i. The configuration space of the

D0-branes is thus Rd/Z2, reflecting the indistinguishability of the particles. We expand,

Xi = 〈Xi〉 +
1

2
xi

mσ
m (2.3)

The bosonic commutator term in (2.1) provides oscillation frequencies for the fluctuations

xi
m. The fluctuations xi

3, lying in the unbroken U(1), are zero modes and describe the

relative motion of the D0-brane pair in R
d−1. In contrast, the m = 1, 2 components,

1More precisely, the theory with N = 16 supercharges describes the dynamics of a pair of D0-branes

in flat ten-dimensional spacetime. Lagrangians with less supersymmetry describe the dynamics of a pair

of fractional D0-branes, trapped to lie at a suitable singularity in a K3, a CY 3-fold, or a G2 holonomy

manifold.
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lying in the broken part of the gauge group, pick up non-zero frequencies and describe

the excitation of open strings stretched between the D0-branes. We form the complex

combination

zi = xi
1 + ixi

2 , i = 1, . . . , d− 1 (2.4)

which has charge +1 under the unbroken U(1) gauge symmetry. Introducing the complex

conjugate momentum πi, the leading order free Hamiltonian for these off-diagonal bosonic

modes is given by,

HB =
1

2g2

[

Pij

(

πiπ̄j + X̂2ziz̄j

)

+ . . .
]

(2.5)

where . . . are interaction parts of the Hamiltonian which are perturbations of order g/X̂1/3.

The Hamiltonian includes the projection operator

Pij = δij −
X̂iX̂j

X̂2
(2.6)

and therefore describes only d− 2 complex harmonic oscillators. These oscillators can be

thought of as the transverse excitations of a string stretched between the D0-branes. The

remaining degree of freedom falls victim to the broken gauge symmetry on the D0-branes;

it is analogous to the scalar that is eaten by the Higgs mechanism in higher dimensions.

We may also expand the fermions around the background (2.2). Once again, the

fermions (ψα)3, lying in the Cartan subalgebra, provide zero modes. Upon quantization,

these fill out a 2N/2 dimensional multiplet of states whose degeneracy is split only by

interaction terms. In contrast, the off-diagonal components (ψα)1 and (ψα)2 have non-zero

frequencies. Here it is convenient to differentiate between the N = 2, 16 cases, which have

real fermions and the N = 4, 8 cases, which have complex fermions. In the former case, we

introduce the complexified Grassmann parameter,

Ψ = ψ1 + iψ2 . (2.7)

in terms of which the fermionic Hamiltonian is written as

HN=2,16
F =

1

2g2

[

Ψ†
(

X̂ · Γ
)

Ψ + . . .
]

(2.8)

The N = 4, 8 cases have complex spinors from the outset. We may now form two linearly

independent complex combinations

Ψ =
1√
2

(ψ1 + iψ2) , Ψ̃ =
1√
2

(ψ1 − iψ2) (2.9)

with respective charges +1 and −1 under the unbroken U(1) gauge group. The fermionic

part of the Hamiltonian is now given by

HN=4,8
F =

1

2g2

[

Ψ†
(

X̂ · Γ
)

Ψ − Ψ̃†
(

X̂ · Γ
)

Ψ̃ + . . .
]

(2.10)

To summarize, the free part of the Hamiltonian H = HB +HF for the massive oscillators

contains N/2 complex scalars and N complex Grassmann parameters. The interaction

Hamiltonian is of order g/X̂1/3.
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2.2 Quantization and the Hilbert space

In the Born-Oppenheimer approximation, we treat the massive oscillator states zi, Ψα and

Ψ̃α quantum mechanically in the classical background X̂. The zero frequency modes X̂i and

(ψα)3 are quantized subsequently. The approximation holds as long as X̂ ≫ g1/3 ensuring

that we keep a separation of scales, meaning that the wavefunction for X̂ should not have

significant support near the origin where the two D0-branes approach. For example, this

will be the case for excited states of orbiting D0-branes that carry large angular momentum.

In the following section we will study the holonomy of the excited states of the massive

oscillators as the two D0-branes orbit. We first briefly describe the Hilbert space of these

states.

Working in the regime X̂ ≫ g1/3, we may restrict attention to the free theory. The

d − 2 massive complex scalars have ground state energy EB = (d − 2)X̂/2g2. One may

construct the Hilbert space by acting with (suitably projected) creation operators Pij a
†
j

and Pij ā
†
j , where

a†i =
(X̂zi − iπ̄i)
√

2X̂
, ā†i =

(X̂z̄i − iπi)
√

2X̂
(2.11)

create quanta of charge +1 and −1 respectively under the unbroken U(1) gauge symmetry.

Canonical quantization for fermions gives the brackets {Ψα,Ψ
†
β} = δαβ and {Ψ̃α, Ψ̃

†
β} =

δαβ . We build the fermionic Hilbert space HF by picking a reference state | 0〉, satisfying

Ψα| 0〉 = Ψ̃α| 0〉 = 0 (2.12)

We may then act upon | 0〉 with Ψ† in the N = 2, 16 theories, and Ψ† and Ψ̃† in the N = 4, 8

theories, to construct a Hilbert space of dimension dim(HF ) = 2N .

The free fermionic Hamiltonians (2.8) and (2.10) have a unique ground state |Ω〉 with

energy EF = −NX̂/4g2. This ensures that the ground state energy of the full theory is

E0 = EB + EF = 0. The fermionic ground state always lies in the sector with half of the

fermions excited. To describe it, we first introduce the fermionic projection operators

P± =
1

2

(

1 ± X̂ · Γ
|X̂ |

)

(2.13)

Then, for the N = 2, 16 theories, the (un-normalized) ground state is given schematically

by,

|Ω〉 =
(

P−Ψ†
)N/2

| 0〉 (2.14)

while, for the N = 4, 8 theories, the (un-normalized) ground state is given by

|Ω〉 =
(

P−Ψ†
)N/4 (

P+Ψ̃†
)N/4

| 0〉 (2.15)

Note that |Ω〉 is the ground state for the high frequency modes in the Born-Oppenheimer

approximation. The question of whether a normalizable ground state of the full theory
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exists is more subtle, and irrelevant for our considerations. (It does for N = 16, but is

expected not to for N = 2, 4, 8).

The physical Hilbert space of the theory is subject to Gauss’ law for the unbroken

U(1) ⊂ SU(2) gauge symmetry which ensures that all physical states are gauge neutral.

The vacuum |Ω〉 is assigned charge zero under the U(1) and so survives Gauss’ purge.

Other states in the fermionic Hilbert space arise by acting on |Ω〉 with combinations of the

charge +1 states P−Ψ and P−Ψ̃† and the charge −1 states P+Ψ† and P+Ψ̃. In each case,

one may construct a state in the physical Hilbert space by dressing the fermionic state

with appropriate powers of the charged bosonic operator Pija
†
j and Pij ā

†
j.

3. Berry phase and Hopf maps

In the previous section we constructed the Hilbert space over each background separation

X̂i. In this section we are interested in how these Hilbert spaces evolve as the D0-branes

orbit, and X̂i traces a closed path Γ in configuration space. The dynamical phase of a

set of degenerate states |φa〉 is accompanied by a (possibly non-Abelian) Berry holonomy,

described by

|φa〉 −→ P exp

(

−i
∮

Γ

Aab · X̂
)

|φb〉 with (Ai)ab = i〈φb|
∂

∂X̂i
|φa〉 (3.1)

We will see that for certain states in quantum mechanics with N supercharges, the Berry

connection A is given by the associated Hopf map. We start by reviewing the the Hopf

maps and connections in more detail.

The Hopf map from SN−1 → SN/2 is defined in the following manner. One starts with

a commuting spinor χα, of the type described in section 2: real for N = 2, 16 and complex

for N = 4, 8. Imposing the normalization condition χ†χ = 1 ensures that χ defines a point

on SN−1. The map to the base manifold SN/2 is then given by the bi-linear form

ni = χ†Γiχ (3.2)

where Γi obey the SO(d− 1) Clifford algebra. One may check that nini = 1 and hence ni

defines a point on SN/2.

It is illustrative to stress the connection to the division algebras by reformulating

the Hopf maps over the algebra K using the isomorphism (1.1). (For more details see,

for example, [18]). The total manifold SN−1 can be thought of as arising from the pair

(q1, q2) ∈ K
2, subject to the constraint |q1|2 + |q2|2 = 1. From this pair we can define the

vector ni, i = 1 . . . , d− 1,

ni = q†Γiq (3.3)

where Γi still satisfy the SO(d − 1) Clifford algebra, hence justifying their name, but can

now be thought of as basis elements of Γi ∈ sl(2; K), defined by

Γi =

(

0 ei
e⋆i 0

)

i = 1, . . . , N/2 , Γd−1 =

(

1 0

0 −1

)

(3.4)
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where ei are the generators of the division algebra K. The fact that these matrices obey the

Clifford algebra reflects the isomorphism (1.1). One can check once again that nini = 1,

ensuring that this defines a map to the base manifold SN/2 ∼= KP
1.

The zeroth Hopf map associated to R is the Möbius bundle Z2 →֒ S1 → RP
1. We will

shortly see how this arises in the theory with N = 2 supercharges: the holonomy of the

ground state is a minus sign whose role is to render the D0-branes anyonic. The remaining

Hopf maps, associated to C, H and O, each define a connection A over the base space SN/2,

which describes how the base manifold is twisted inside the total space. These connections

are given in terms of the projection operators P± defined in (2.13), where we identify

X̂i ≡ X̂ni. Let λa be the non-vanishing orthonormal eigenvectors of P−: i.e. P−λa = λa.

The Hopf connection is defined by,

Aab = iλ†b dλa (3.5)

For N = 4, 8 and 16, the maximum value of the index a is 1, 2, 8 and Aab is therefore

a U(1), U(2) and SO(8) connection respectively. In the following, we will describe these

connections in more detail and see how they arise as the Berry phase of certain states in

the quantum mechanics.

3.1 N = 2 and the zeroth Hopf map

For the N = 2 case, the ground state wavefunction undergoes a discrete holonomy as the

D0-branes orbit. While the existence of this phase follows on general grounds from the

degenerate nature of HF at the origin, it is instructive to review explicitly how it occurs.

The fermionic Hilbert space HF consists of four states | 0〉, Ψ†
α| 0〉 and Ψ†

1Ψ
†
2| 0〉. The

ground state may be expanded as a linear combination of the middle sector,

|Ω〉 = λαΨ†
α| 0〉 (3.6)

with λα the negative eigenvector of X̂ ·Γ. We choose to work with the real basis of gamma

matrices Γ1 = σ1 and Γ2 = σ3 and introduce polar coordinates

X1 = X sin θ , X2 = X cos θ (3.7)

Then the groundstate eigenvector is

~λ =
1√

2 + 2 cos θ

(

− sin θ

1 + cos θ

)

(3.8)

where we have resolved the square-root sign ambiguity in favour of the positive. The

evolution of the eigenvector as θ is adiabatically varied is shown in the figure. We see that

as θ varies from 0 to 2π, ~λ returns to −~λ. This is the manifestation of the zeroth Hopf

map: S1 → S1.

This Z2 Berry phase is inherited by the ground state of the D0-branes. After a single

orbit, the wavefunction returns to |Ω〉 7→ −|Ω〉. Yet such an orbit is equivalent to two

exchanges of the D0-branes. Since the branes are indistinguishable particles, upon a single

– 7 –
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Figure 1: The Z2 holonomy as the eigenvector encircles the degeneracy at the origin.

exchange, the D0-brane wavefunction picks up the phase e±iπ/2 = ±i, where the ± sign

depends on whether the exchange proceeds clockwise or anti-clockwise. We learn that the

D0-branes are anyons [19, 20].

It is worthwhile re-deriving the fact that the D0-branes are anyons by studying a single

exchange, rather than a complete orbit. Let us start with the D0-branes separated by

X̂i = (0, X̂), for which the ground state is given by |Ω〉+ = Ψ†
2| 0〉. After an anti-clockwise

rotation to X̂i = (0,−X̂), we see from (3.8) that the ground state adiabatically evolves into

|Ω〉− = −Ψ†
1|0〉. The Z2 Weyl symmetry ensures that the Hilbert space constructed over

X̂i is physically identified with the Hilbert space over −X̂i. Thus in order to understand

the phase picked up by the ground state, we need to understand the map between the

Hilbert spaces constructed over ±X̂i induced by the Weyl group.

The action of the Z2 Weyl group is given by,

Z2 : X̂i 7→ −X̂i ; zi 7→ −z†i ; Ψ 7→ −Ψ† (3.9)

From the latter of these actions, we see that the reference state | 0〉+ defined by (2.12) at

X̂i is mapped to Ψ†
1Ψ

†
2| 0〉− at −X̂i, up to a phase ω,

Z2 : | 0〉+ 7→ ωΨ†
1Ψ

†
2| 0〉− (3.10)

The question is: what is ω? We can answer this by following the fate of the state Ψ†
1| 0〉+

under two actions of the Weyl group,

Ψ†
1| 0〉+ 7→ −ωΨ†

2| 0〉− 7→ −ω2Ψ†
1| 0〉+ (3.11)

Insisting that the Weyl group action squares to the unit operator, we learn that ω = ±i.
We now use this knowledge to map the state |Ω〉− above back to an element of the Hilbert

space over X̂i = (0, X̂). We see,

|Ω〉+ adiabatic−→ |Ω〉− Z2−→ ∓i|Ω〉+ (3.12)

– 8 –
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The upshot is that the ground state of the two D0-branes indeed picks up the phase factor

±i upon exchange.

Note that we have still to quantize the U(1) ⊂ SU(2) Cartan subalgebra. In particular,

this includes the massless fermions (ψ3)α, which double the Hilbert space. The resulting

states have conjugate exchange statistics. If one state picks up a phase +i upon an anti-

clockwise rotation, the other state picks up a phase −i.

3.2 N = 4 and the first Hopf map

We now turn to D0-branes moving in d−1 = 3 spatial dimensions. As explained in section

2, the Hilbert space is constructed by acting with bosonic and fermionic creation operators

on the reference state | 0〉. Each of these creation operators is accompanied by a projection

operator: P for bosons, defined in (2.6), and P± for fermions, defined in (2.13). These two

types of projection operators give rise to two types of Berry holonomy:

The projection operators P restrict the bosonic excitations to lie tangent to the sphere

S2 at fixed |X̂ |. As we saw above, this can be traced to the implementation of the SU(2)

gauge symmetry and, from the string theory perspective, is the familiar statement that

stretched strings have only transverse excitations. The net result is that as the D0-branes

orbit, excited states that include bosonic excitations undergo a Berry holonomy as tangent

vectors on the sphere S2. This is the same kind of non-Abelian holonomy that was described

in the original paper of Wilczek and Zee [21].

Fermionic excitations are accompanied by the projection operators P± (2.13). To

be concrete, let’s focus on the operator P−. We introduce the normalized eigenvector

P−λ = λ. Acting with the creation operator P−Ψ† means creating the normalized state

|λ〉 = λαΨ†
α| 0〉. As X̂i varies adiabatically, this state undergoes a holonomy described by

the Berry connection,

Ai = i〈λ| ∂

∂X̂i
|λ〉 (3.13)

which is the connection of the Hopf map (3.5). An explicit form of the connection requires

a choice of gauge which, in this context, means a chosen phase for the eigenvector λ. We

choose λ1 ∈ R, a choice which is valid everywhere except along the positive X̂3 axis. In

this gauge, the Berry connection takes the familiar form of the Dirac monopole,

Ai =
−X̂j

2X̂(X̂ − X̂3)
ǫij i = 1, 2 , A3 = 0 (3.14)

The Hopf-Berry connection has first Chern class −1 over the sphere S2, meaning that the

integral of the field strength F = dA yields,

c1 =
1

2π

∫

S2

F = −1 (3.15)

Acting with the operator P+Ψ† results is a state whose Berry connection has Chern class

+1. The ground state in the N = 4 theory is given by

|Ω〉 = N ′(P− Ψ†)(P+Ψ̃†)| 0〉 ≡ (λαΨ†
α)(λ̃βΨ̃†

β)| 0〉 (3.16)

– 9 –
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where N ′ is a normalization factor, while λ (λ̃) is the normalized non-zero eigenvector of

P∓. The presence of the two, opposite, projection operators ensures that the ground state

does not pick up a Berry phase as the D0-branes orbit.

Excited states do pick up a Berry phase, given by the sum of the phases associated to

the relevant projection operators. For example, a degenerate pair of states obeying Gauss’

law is given by

|φ−〉 = (λαΨ†
α)(λαΨ̃†

α)| 0〉 , |φ+〉 = (λ̃αΨ†
α)(λ̃αΨ̃†

α)| 0〉 (3.17)

These states have energy E = EB + EF = X̂/g2 and describe two strings attached to

the D0-branes. (They are part of a triplet of excited spin 1 states). From the discussion

above, we see that these states pick up a Berry phase arising from a magnetic monopole of

charge q = ±2. Physically, this means that the D0-branes orbit as charged particles as if

in the presence of a magnetic monopole fixed at their centre. In a semi-classical analysis,

the orbits are no longer restricted to lie on a plane, but rather lie on a cone with opening

angle cos θ = −q/(2J + q), where J is angular momentum of the spinning D0-branes. The

energy E these rotating states scales as E3 ∼ g2J(J + q).

3.3 N = 8 and the quaternionic Hopf map

The discussion for the N = 8 theory is very similar to the N = 4 theory above. The unique

ground state of the system (2.15) does not undergo a Berry phase.

Excited states do. The typical state undergoes a non-Abelian holonomy arising from

the sum of bosonic and fermionic Berry connections. Once again, bosonic excitations give

rise to a holonomy in which states transform as tangent vectors on S5. More interesting

for the present discussion are the fermionic excitations. The projection operator P− now

has a pair of orthonormal eigenvectors: P−λa = λa, a = 1, 2. This means that the resulting

Berry holonomy of the states |λa〉 = λaαΨ†
α| 0〉 is described by a U(2) connection,

(Ai)ab = i〈λa|
∂

∂X̂i
|λb〉 (3.18)

Explicit computation shows that this is actually an SU(2) connection, known as the Yang-

monopole [3]. A suitable choice of gamma matrices and gauge, can be found in [16]. The

resulting connection is,

(Ai)ab =
−X̂j

2X̂(X̂ − X̂5)
ηm

ij σ
m
ab i = 1, 2, 3, 4 , A5 = 0 (3.19)

where ηm
µν are the self-dual 4 × 4 ’t Hooft matrices and σab are the Pauli matrices. The

Yang monopole is perhaps more familiar when viewed as a connection restricted to S4,

where it is simply the SO(5) invariant instanton satisfying F = −⋆F with second Chern

class,

c2 =
1

8π2

∫

S4

tr(F ∧ F ) = −1 (3.20)

where the non-Abelian field strength is defined by Fij = ∂iAj − ∂jAi − i[Ai, Aj ]. States

constructed from the projection operators P+ undergo a Berry holonomy associated with

a Yang-monopole of Chern class c2 = +1.
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3.4 N = 16 and the last Hopf map

Details for the theory with N = 16 supercharges are again similar to those above: the

vacuum (2.14) does not pick up a Berry connection, while bosonic excitations transform

as tangent vectors on S8. The fermionic excitations are associated to projection operators

P±, which are now 16 × 16 real matrices. We once again define the 8 orthonormal, real

eigenvectors P−λa = λa, with a = 1, . . . , 8. States in the quantum mechanics involving

fermions undergo a holonomy arising from the SO(8) Berry connection,

(Ai)ab = i〈λb|
∂

∂X̂i
|λa〉 (3.21)

with |λa〉 = λaαΨ†
α| 0〉. We refer to the resulting connection as the SO(8) octonionic

monopole. It was constructed in [4, 5]. A simple expression for the connection can be

found in [14]

(Ai)ab =
−X̂j

2X̂(X̂ − X̂9)
Σij i = 1, . . . , 8 , A9 = 0 (3.22)

where Σij are the 28 generators of SO(8) Lie algebra, defined in terms of the Γ matrices.

An explicit form can be given if we choose a suitable representation for the generators of the

octonions ei, i = 1 . . . 8 in (3.4), in terms of 8× 8 real matrices. We choose the unit matrix

to correspond to e8 = 1. Then Σij = −1

2
[ei, ej ], for i = 1, . . . , 7 and Σi8 = ei [14]. The

non-Abelian field strength restricted to S8 satisfies the generalized self-duality condition

F ∧ F = −⋆F ∧ F , with

1

4!(2π)4

∫

S8

tr(F ∧ F ∧ F ∧ F ) = −1 (3.23)

As in previous cases, states associated to P+ undergo a Berry holonomy with c4 = 1.

It is intriguing to see the octonionic monopole appearing in the Matrix theory for

D0-branes in this fashion, although its physical significance in M-theory remains obscure.

Nonetheless, it is tempting to speculate. Firstly, recall that there is a precedent for the

appearance of Berry’s phase in Matrix theory: the membrane feels the magnetic field of

the five-brane through the appearance of a Berry connection [22]. In this case, the abstract

Berry connection is recast as a physical magnetic field. It would be very interesting if a

similar M-theory interpretation could be given in the present case. We note in passing that

a physical octonionic monopole is conjectured to act as the end-point for an open heterotic

string [23].
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